Ewald expansions of a class of zeta-functions.

نویسندگان

  • Kalyan Chakraborty
  • Shigeru Kanemitsu
  • Haruo Tsukada
چکیده

The incomplete gamma function expansion for the perturbed Epstein zeta function is known as Ewald expansion. In this paper we state a special case of the main formula in Kanemitsu and Tsukada (Contributions to the theory of zeta-functions: the modular relation supremacy. World Scientific, Singapore, 2014) whose specifications will give Ewald expansions in the H-function hierarchy. An Ewald expansion for us are given by [Formula: see text] or its variants. We shall treat the case of zeta functions which satisfy functional equation with a single gamma factor which includes both the Riemann as well as the Hecke type of functional equations and unify them in Theorem 2. This result reveals the H-function hierarchy: the confluent hypergeometric function series entailing the Ewald expansions. Further we show that some special cases of this theorem entails various well known results, e.g., Bochner-Chandrasekharan theorem, Atkinson-Berndt theorem etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary function expansions for Madelung constants

The Madelung constant-essentially the Coulomb energy density of a crystal-is usually calculated via Ewald error function expansions or, for the simpler cubic structures, by the 'cosech' series of modern vintage. By considering generalised functional equations for multidimensional zeta functions, we provide explicit expansions for the spatial potential and energy density of three-dimensional per...

متن کامل

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

Rational series for multiple zeta and log gamma functions

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-...

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

Nonharmonic Gabor Expansions

We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion‎. ‎In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity‎, ‎exactness and deficienc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SpringerPlus

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016